Advanced High-Speed Design

Let MindShare Bring “High-Speed Design” to Life for You
With edge rates ever decreasing and clock rates becoming faster, it is vital that engineers understand the underlying issues of the transmission line to insure signal integrity. Also, bypassing these higher frequency edge rates and the ever-increasing power of today’s FPGAs and micros require a better grasp of signal power switching. PCBs are becoming more complex with finer traces and spaces and more layers with more blind and buried vias. This requires more attention to controlling crosstalk, EMI, impedance control.

You Will Learn:

- How to cost effectively design and layout a high-speed PCB without sacrificing signal integrity
- How to comply with Signal Integrity (SI) & EMI standards
- Cookbook design rules that ensure your PCB will function properly in the prototype stage

Course Length: 3 Days

Who Should Attend?

- Digital logic engineers and system architects
- EMC specialists
- Technicians
- PCB layout professionals
- IC designers
- Applications Engineers

Course Contents:

- Advanced High Speed Concepts
 - Impedance of structures to both clock rate harmonics and edge rate harmonics
 - Resonance on Transmission Lines: Serial and Parallel resonance. Quarter wave length differences of high and low end impedance termination.
 - Near field and far field definitions and their effects on the magnetic and electric field strengths
 - The quality factor for lumped circuitry: Why they can ring, crosstalk and cause EMI radiation
- Transmission Lines (TL)
 - The TL Cell-Defining, Rdc, Rac, Skin Effect, Proximity, and the Dielectric Loss
 - Current Travel on TLs: Converting the B field to eddy currents and how it creates the skin effect and proximity effect
 - Characteristics of PCB Material: What material is used for high frequency: DF, Cost, DFM, DFA
- Performance Regions
 - The basic RLGC cell and its effect on rising and falling edges
 - The Lumped Element region-parameters and model
 - Practical applications of the lumped model
 - The RC Region of the lumped model. Input/characteristic/Output impedance. Propagation velocity, Elmore’s delay and lumped model algorithm
 - The Constant Loss Region: Boundary Conditions, propagation coefficient, resonance, termination considerations
The Skin Effect Region: Boundary Conditions, characteristic impedance, propagation delay parameters, termination options, speed and distance
Dielectric Region: Boundary Conditions, characteristic impedance, dielectric loss/tangent loss, propagation delay, resonance, termination

The Printed Circuit Board (PCB)
Modeling PCB Traces
Skin Effect and Dielectric Loss for PCB Traces: microstrip and stripline
Dielectric Properties, relative costs and core/prepreg issues for high speed stackups
Effects of temperature, frequency and mfg tolerance on characteristic impedance
Solder Mask and Conformal Coating: effects on Z0, propagation delay and impedance equations
Matching Capacitive and inductive loads using trace width modification
Far end and Near end Crosstalk: Inductive and capacitive for microstrips and striplines
Matching traces to connectors: Minimizing reflections, crosstalk and EMI
Vias: C and L of vias (through hole, blind, buried), via discontinuities and eliminating reflections of vias

Advanced Topics in Bypassing
Shoot through current and die capacitance
Eliminating mode conversion
Why the 0201, the long electrode and the Y cap may be essential to control switching impedance and EMI radiation
Breakout and bypassing the 4, 5, 6 perimeter ring and fully populated BGA
Do copperfills (pours) really help in bypassing?
What is the present status of innerplane C materials (FR4, ceramic filled, and polymide) and how thin can they practically be made?
How much C is needed and layout considerations for today's FPGAs and micros?
Return current and intelligent via placement

Differential Signaling
Attributes/drawbacks of loosely/tightly coupled differential pairs
Definition and examples of differential and common mode V and I
Differential impedance: Odd and even modes
Advantages and disadvantages of Edge (side by side), Broadside (dual), asymmetric, and microstrip differentials
Reflections and crosstalk in differentials. Metastability, Clk skew, driver skew, bit pattern sensitivity, ISI, skin effect and dielectric constant. Jitter, BER, and the eye diagram
Matching electrical lengths

High Speed Clocking
Clock skew and jitter
PLLs, DDLs, serpentine traces and programmable delays
Source and end termination considerations for star, daisy chain and driving multiple loads
Clock driving high speed buses: RAMbus and address drivers, minimizing the C load.
Random and deterministic jitter. Power Supply noise and Clk jitter

High Speed Data Transmission
Pre-emphasis and equalization Techniques
The effects of ISI, Skin and dielectric losses
The effect of various base materials of long haul transmission. The effects of eye closure on BER
A real world example of compensation techniques

Recommended Prerequisites:
An understanding of the course material contained in the high-speed digital design and PCB layout course. The high-speed digital design and PCB layout course is not a prerequisite but familiarity with the material would be helpful in understanding the advanced concepts in this class.
Course Material:
This course includes the text, "High-Speed Signal Propagation: Advanced Black Magic," by Howard Johnson, Ph.D. and Martin Graham, Ph.D. plus a 284-page book of class notes.
Are your company’s technical training needs being addressed in the most effective manner?

MindShare has over 25 years experience in conducting technical training on cutting-edge technologies. We understand the challenges companies have when searching for quality, effective training which reduces the students’ time away from work and provides cost-effective alternatives. MindShare offers many flexible solutions to meet those needs. Our courses are taught by highly-skilled, enthusiastic, knowledgeable and experienced instructors. We bring life to knowledge through a wide variety of learning methods and delivery options.

training that fits your needs

MindShare recognizes and addresses your company’s technical training issues with:

- Scalable cost training
- Just-in-time training
- Training in a classroom, at your cubicle or home office
- Customizable training options
- Overview and advanced topic courses
- Reducing time away from work
- Training delivered effectively globally
- Concurrently delivered multiple-site training

MindShare training courses expand your technical skillset

- PCI Express 2.0®
- Intel Core 2 Processor Architecture
- AMD Opteron Processor Architecture
- Intel 64 and IA-32 Software Architecture
- Intel PC and Chipset Architecture
- PC Virtualization
- USB 2.0
- Wireless USB
- Serial ATA (SATA)
- Serial Attached SCSI (SAS)
- DDR2/DDR3 DRAM Technology
- PC BIOS Firmware
- High-Speed Design
- Windows Internals and Drivers
- Linux Fundamentals
- ... and many more.

All courses can be customized to meet your group's needs. Detailed course outlines can be found at www.mindshare.com

PCI Express ® is a registered trademark of the PCISIG
Engage MindShare

Have knowledge that you want to bring to life? MindShare will work with you to “Bring Your Knowledge to Life.” Engage us to transform your knowledge and design courses that can be delivered in classroom or virtual classroom settings, create online eLearning modules, or publish a book that you author.

We are proud to be the preferred training provider at an extensive list of clients that include:

- ADAPTEC
- AMD
- AGILENT TECHNOLOGIES
- APPLE
- BROADCOM
- CADENCE
- CRAY
- CISCO
- DELL
- FREESCALE
- GENERAL DYNAMICS
- HP
- IBM
- KODAK
- LSI LOGIC
- MOTOROLA
- MICROSOFT
- NASA
- NATIONAL SEMICONDUCTOR
- NETAPP
- NOKIA
- NVIDIA
- PLX TECHNOLOGY
- QLOGIC
- SIEMENS
- SUN MICROSYSTEMS
- SYNOPSYS
- TI
- UNISYS

MindShare Learning Options

Classroom Training
Invite MindShare to train you in-house, or sign-up to attend one of our many public classes held throughout the year and around the world. No more boring classes, the ‘MindShare Experience’ is sure to keep you engaged.

Virtual Classroom Training
The majority of our courses live over the web in an interactive environment with WebEx and a phone bridge. We deliver training cost-effectively across multiple sites and time zones. Imagine being trained in your cubicle or home office and avoiding the hassle of travel. Contact us to attend one of our public virtual classes.

eLearning Module Training
MindShare is also an eLearning company. Our growing list of interactive eLearning modules include:
- Intro to Virtualization Technology
- Intro to IO Virtualization
- Intro to PCI Express 2.0 Updates
- PCI Express 2.0
- USB 2.0
- AMD Opteron Processor Architecture
- Virtualization Technology
...and more

MindShare Press
Purchase our books and eBooks or publish your own content through us. MindShare has authored over 25 books and the list is growing. Let us help make your book project a successful one.