

NVMe 1.4 Architecture Training

Let MindShare bring "NVMe 1.4 Architecture" to life for you

MindShare's NVMe (Non-Volatile Memory Express) course begins with an optional review of PCI Express (PCIe) basics as a foundation for the study of NVMe. Next, a high-level view of the architecture provides the big-picture context of the hardware architecture and software interactions. Finally, we drill down into details for each aspect of the NVMe architecture.

You Will Learn:

- Basics of the NVMe Host Controller Interface model
- The steps for device initialization
- How command queues are set up and managed
- How host software
 - o Informs the controller of new commands to execute
 - Learns that commands have been completed
- What commands are defined up to 1.4 spec, and how they work
- Error reporting structures
- Power management options
- Optional PCIe architecture overview on request

Who Should Attend?

This course is hardware-oriented, but is suitable for both hardware and software engineers because the registers used to control the hardware are described in detail. The course is ideal for RTL-, chip-, system or system board-level design engineers who need a broad understanding of NVMe.

Course Length: 2 Days

Course Outline:

Basic Topics (Covered on Day 1)

- Introduction
 - PCIe Overview
 - NVMe concepts and definitions
 - Comparison with SATA
 - NVMe Host-Controller Interface overview
 - HANDS-ON ARBOR LAB: discover register addresses
 - o Queue Management
 - Doorbell Head and Tail registers
 - Execution sequence
 - Tracking completion status
- Commands
 - NVMe Admin Commands
 - General Structure of commands
 - Identify command options and results
 - Creation and management of Queues
 - Asynchronous Event Notification
 - HANDS-ON ARBOR LAB: View commands in a queue
 - NVMe IO Commands
 - Read and Write command structure
 - Optimizing write commands
 - Avoiding write amplification
 - Buffer addressing modes (PRPs vs. SGLs)
 - Priority and Arbitration of commands

- Completing commands
- Handling Metadata (DIF/DIX)
- Get Features / Set Features full coverage of features

• HANDS-ON ARBOR LAB: View get/set features commands, discover queue allocation rchitecture

- Architecture
 - Error reporting, Error Reporting Structures
 - Asynchronous Events
 - Completion status
 - Log pages
 - o Other log pages
 - o Firmware updates
 - o Controller registers
 - Controller initialization
 - Power Management
 - o Reservations

Additional Topics (Requires a 2-day course)

- Summary of changes for 1.3
 - Boot partitions
 - Thermal management by host
 - Write streams
 - o Deallocation
 - Virtualization support
 - Debug support Telemetry, initiated by host or device
 - Self-test options
 - Sanitize command
 - New commands
- Summary of changes for 1.4
 - NVM Sets
 - o I/O Determinism
 - Read recovery levels
 - Persistent Memory Region (PMR)
 - Asymmetric Namespace Access (ANA)
 - Namespace write protect
 - Persistent event log
 - Rebuild assist
 - o Endurance groups
 - I/O Performance and Endurance Hints
 - Traffic-based Keep Alive
 - Vendor-specific UUIDs
 - Verify new command
 - Administrative controller
 - SQ Associations
- Other commands
 - Write uncorrectable
 - Write zeroes
 - o Compare
 - Dataset management
- PCIe Architecture Overview
 - Introduction
 - Basic operation
 - Transaction types
 - Layers and responsibilities overview
 - o Configuration overview

Course Material:

- 1) A downloadable PDF version of the presentation slides
- 2) Optional Add-On: Arbor software
- 3) Optional Add-On: NVMe eLearning

Recommended Prerequisites:

Previous exposure to PCIe is very helpful, as is general knowledge of PC architectures.

